III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 LINEAR \& DIGITAL IC APPLICATIONS (COMMON TO BME, E.CONT.E, ETM, E.COMP.E)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) What is an electrical noise? What precautions can be taken to minimize the effect of noise on an op-amp circuit?
b) Given $R_{1}=100 \Omega$ and $R_{F}=4.7 \mathrm{k} \Omega$. What is the maximum possible output offset voltage $\mathrm{V}_{\text {oo }}$? The op-amp is LM307 with $\mathrm{V}_{\mathrm{io}}=10 \mathrm{mv}$ and supply voltage $\pm 15 \mathrm{~V}$ as shown in figure.

2.a) Explain why do we use two stage op-amplifier as an instrumentation amplifier.
b) Draw the output of the op amp as shown in figure. When $V_{1}=0 \mathrm{~V} \& \mathrm{~V}_{1}=4 \mathrm{~V}$.
[4+12]

3. Draw the circuit of the second order low pass filter and derive the gain of the filter and also plot the frequency response.
4.a) Explain the function of each pin of 555 timer.
b) List the important features of 555 timer.
5.a) Design a first -order low pass filter so that it has a cut off frequency of 2 kHz and pass Band gain of ' 1 '
b) Convert the 2 kHz low pass filter to a cut off frequency of 3 kHz in part (a) [8+8]
6. Explain with suitable example how binary multiplication can be performed using shift and add method?
7. Explain following terms:
a) Logic Levels
b) Speed of logic circuit
c) Power dissipation
d) Noise Margin
e) Noise immunities.
8. a) With neat circuit diagram explain the working of a 4-bit odd parity generator .
b) Design a 2-digit binary multiplication circuit?
--0Oo--

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 LINEAR \& DIGITAL IC APPLICATIONS (COMMON TO BME, E.CONT.E, ETM, E.COMP.E)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) List out the merits and limitations of integrated circuit technology?
b) Explain the input offset current and input bias current with op-Amps.
2.a) What are the limitations of an ordinary op-amp differentiator?
b) The inverting amplifier with a single supply is shown in figure $R_{\text {in }}=50 \Omega, R_{4}=$ $10 \mathrm{k} \Omega, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{R}_{\mathrm{F}}=100 \mathrm{k} \Omega$ and $\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{0}=0.1 \mu \mathrm{~F}$. Determine the BW of amplifier. Also determine the maximum ideal output voltage swing.

3.a) Design a Band pass filter so that $\mathrm{f}_{\mathrm{c}}=1 \mathrm{kHz}, \mathrm{Q}=3$ and $\mathrm{A}_{\mathrm{F}}=10$.
b) Draw the frequency response.
4.a) With neat diagram explain the dual slope type A / D converter?
b) Compare successive approximation type
\& single slope ADC?
5. If $\mathrm{f}_{\mathrm{s}}=100 \mathrm{KHz}$, the voltage to frequency transfer coefficient of VCO, $\mathrm{K}_{\mathrm{v}}=2 \mathrm{mHz} / \mathrm{v}, \mathrm{f}_{0}$ the VCO frequency is 5 MHZ and $\mathrm{N}=100$ in the frequency multiplier what is the dc voltage at lock?
6. Implement the following functions using a multiplexer:
a) $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum m(1,3,5,6)$
b) $\quad \mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\sum m(0,1,3,4,8,9,15)$
7. Explain the MOS and CMOS logic families and different CMOS characteristics.
8.a) With the help of logic diagram of a 4-bit adder/subtractor for adding or subtracting two numbers of arbitrary signs, using 1's complement and explain its working?
b) Design a 4-bit parallel full adder with look ahead carry scheme?

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 LINEAR \& DIGITAL IC APPLICATIONS (COMMON TO BME, E.CONT.E, ETM, E.COMP.E)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) Why is emitter resistor RE replaced by a constant current bias circuit in differential amplifier stage of an op-amp?
b) Compare and contrast the properties of ideal and practical op-amp.
2. For the VCO determine the change in output frequency if V_{c} is varied between 9 V and 11 V . Assume that $+\mathrm{V}=12 \mathrm{~V}, \mathrm{R}_{2}=15 \mathrm{k} \Omega, \mathrm{R}_{3}=100 \mathrm{k} \Omega, \mathrm{R}_{1}=0.8 \mathrm{k} \Omega$, and $\mathrm{C}_{1}=75$ Pf. Derive the equations used.
[16]
3.a) Distinguish between single slope and dual slope type of A/D converter?
b) What are over sampling converter?
4. With neat circuit diagrams explain the following:
a) AND-OR-INVERT gates
b) Open collector TTL 2-input OR gate.
5.a) With a circuit diagram and waveform explain the operation of an inverting and non-inverting comparators.
b) For the circuit as shown in figure draw the output wave form, given $\mathrm{V}_{\mathrm{i}}=100 \mathrm{mV}$ peak sine wave at $100 \mathrm{~Hz}, \mathrm{R}=1 \mathrm{k} \Omega$ and $\mathrm{V}_{\mathrm{r}}=\mathrm{V}_{\mathrm{z}}=6.2 \mathrm{~V}$ and supply voltage is $\pm 12 \mathrm{~V}$.

6.a) Derive the expression of the lock-in range.
b) Derive the expression of the capture range.
7. With the help of neat diagram and truth table explain BCD to 7-segment decoder.
[16]
8.a) What is meant by a transparent latch?
b) Convert a D-FF to a JK-FF, using extra NAND gates, if required.
c) Explain the function of preset and clear inputs in flip-flop.
d) Why $\mathrm{S}=\mathrm{R}=1$ not permitted in SR-Flip-Flop.

III B.TECH - I SEM EXAMINATIONS, NOVEMBER - 2010
 LINEAR \& DIGITAL IC APPLICATIONS (COMMON TO BME, E.CONT.E, ETM, E.COMP.E)

Time: 3hours
Max.Marks:80

Answer any FIVE questions All questions carry equal marks

1.a) How many bits are required to design a DAC, that can have a resolution of 5 mv ? The ladder has +8 V full scale?
b) How many resisters are required for an 8-bit weighted resister DAC? What are the resistance values, assuming the smallest resistance is R ?
2. Explain the following terms:
a) Floating input
b) Active and passive pull-up
c) Open collector outputs
d) Unused points.
3. Design a BCD to gray code converter using:
a) $8: 1$ multiplexer.
b) BCD to decimal decoder and NAND gates.
c) NAND gates only.
4. Write short notes on the following:
a) Level triggering.
b) Edge triggering.
c) Pulse triggering
d) Explain the RS flip-flop using NAND gates?
5.a) Describe the limitations of op-amp as a comparator.
b) In the as shown in figure determine the output voltage swing and draw the output waveform given $V_{i}=500 \mathrm{mV}$ peak 100 Hz sine wave, $\mathrm{R}=100 \Omega, \mathrm{~V}_{\mathrm{z}}=6.2, \mathrm{~V}_{1}, \mathrm{~V}_{\mathrm{D}}$ $=0.7 \mathrm{~V}$ and supply voltages $= \pm 15 \mathrm{~V}$.
[8+8]

6.a) Derive that the period of a triangular wave is $\mathrm{T}=4 \mathrm{R}_{1} \mathrm{C}_{1}\left(R_{2} / R_{3}\right)$.
b) In the circuit as shown in figure $+\mathrm{V}=+12 \mathrm{~V}, \mathrm{R}_{2}=1.5 \mathrm{k} \Omega, \mathrm{R}_{1}=\mathrm{R}_{3}=10 \mathrm{k} \Omega$ \& $\mathrm{C}_{1}=0.001 \mu \mathrm{f}$.
i) Determine the nominal frequency of the output waveforms.
ii) Draw the square wave output waveform if the modulating input is a sine wave.

7.a) Calculate v_{0} / v_{1} for the circuit as shown in figure.

b) Calculate $Y_{\text {of }}$ for the gain circuit as shown in figure $R_{i}=\infty$

8.a) A system uses a 12-bit word to represent the input signal of the maximum peak -to-peak voltage at the input is set to 5 V ,find the resolution of the system and the dynamic range.
b) Explain the characteristics of an n-bit weighted resistor D/A converter?

